Using FLEX Equipment and Risk Informed Decision Making to Maximize Safety

Thomas Zachariah
Senior Project Manager
2017 Regulatory Information Conference

Mission
Improve SAFETY and efficiency of the nuclear fleet with the use of portable equipment

<table>
<thead>
<tr>
<th>Maximize Areas of Credit</th>
<th>Expand operational and regulatory credit given to mitigating strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximize FLEXibility</td>
<td>Expand where portable equipment is used in plant operations</td>
</tr>
<tr>
<td>FLEX and Beyond</td>
<td>Be inclusive of all portable equipment beyond just FLEX (e.g. B.S.b portable equipment)</td>
</tr>
</tbody>
</table>

Vision
PORTABLE EQUIPMENT ↔ RISK INSIGHTS
IMPROVED SAFETY & OPERATIONS
Industry Framework Guidance

<table>
<thead>
<tr>
<th>NEI 16-08</th>
<th>NEI 16-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance for Optimizing the Use of Portable Equipment</td>
<td>Crediting Mitigating Strategies in Risk Informed Decision Making</td>
</tr>
</tbody>
</table>

- Improving plant safety and operations using portable equipment
- Evaluating portable equipment in risk-informed decision making

Implementing Portable Equipment to Improve Risk

- Evaluate the potential use of equipment
- Determine the benefits of use of the equipment
- Establish a technical basis for use of the equipment
- Is there a need to make changes to training programs?
- Does sufficient staffing exist to implement the equipment?
- Will implementing portable cause any unintended consequences?

Addressing Unintended Consequences

Consider whether implementing portable equipment will ...

- Cause a Reactor Scram
- Cause the actuation or failure of a plant system
- Impact to plant design bases
- Impact on other plant programs (e.g., FLEX program)
- Impact maintenance Rule implementation
- Impact Physical and Cyber Security
- Need storage of radiologically contaminated equipment
- Impact the site emergency plan
Crediting Portable Equipment in RIDM

Is the Equipment Feasible to Use in the Scenario?
Will the Equipment be Available, Reliable & Deployable?
Is There Adequate Time Margin?
Is there Clear and Effective Command and Control?
Will Environmental Conditions Challenge Implementation?

Potential Applications of NEI 16-06

<table>
<thead>
<tr>
<th>Activity</th>
<th>WFF</th>
<th>WW</th>
<th>SDP NOEDs MSPI</th>
<th>Maintenance Rule</th>
<th>Risk Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative Approach</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi Quantitative Streamlined</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRA Modeling</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enhancements to PRA Modeling

- Existing data and methods are sufficient for establishing credit for mitigating strategies
- However, enhancements are necessary to establish the appropriate level of credit
- NEI 16-06 provides approaches to address issues until data and methods are refined
- EPRI has started work for the development of failure frequencies and enhancements to HRA methods